

Engineering Formula Sheet

Statistics

Mean

 $\mu = \frac{\sum x_i}{n}$

 μ = mean value

 $\Sigma \mathbf{x}_i = \text{sum of all data values } (\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots)$

n = number of data values

Standard Deviation

$$\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{n}}$$

 σ = standard deviation x_i = individual data value ($x_1, x_2, x_3, ...$) μ = mean value n = number of data values

Probability

Frequency

$$f_x = \frac{n_x}{n}$$
$$P_x = \frac{f_x}{f_a}$$

 f_x = relative frequency of outcome x n_x = number of events with outcome x n = total number of events P_x = probability of outcome x f_a = frequency of all events

Binomial Probability (order doesn't matter)

 $\mathsf{P}_{\mathsf{k}} = \frac{\mathsf{n}!(\mathsf{p}^{\mathsf{k}})(\mathsf{q}^{\mathsf{n}\cdot\mathsf{k}})}{\mathsf{k}!(\mathsf{n}\cdot\mathsf{k})!}$

P_k = binomial probability of k successes in n trials

p = probability of a success

q = 1 - p = probability of failure

k = number of successes

n = number of trials

Mode

Place data in ascending order. Mode = most frequently occurring value

If two values occur at the maximum frequency the data set is *bimodal*. If three or more values occur at the maximum frequency the data set is *multi-modal*.

Median

Place data in ascending order. If n is odd, median = central value If n is even, median = mean of two central values

n = number of data values

Range

Range = $x_{max} - x_{min}$

 x_{max} = maximum data value x_{min} = minimum data value

Independent Events

P (A and B and C) = $P_A P_B P_C$

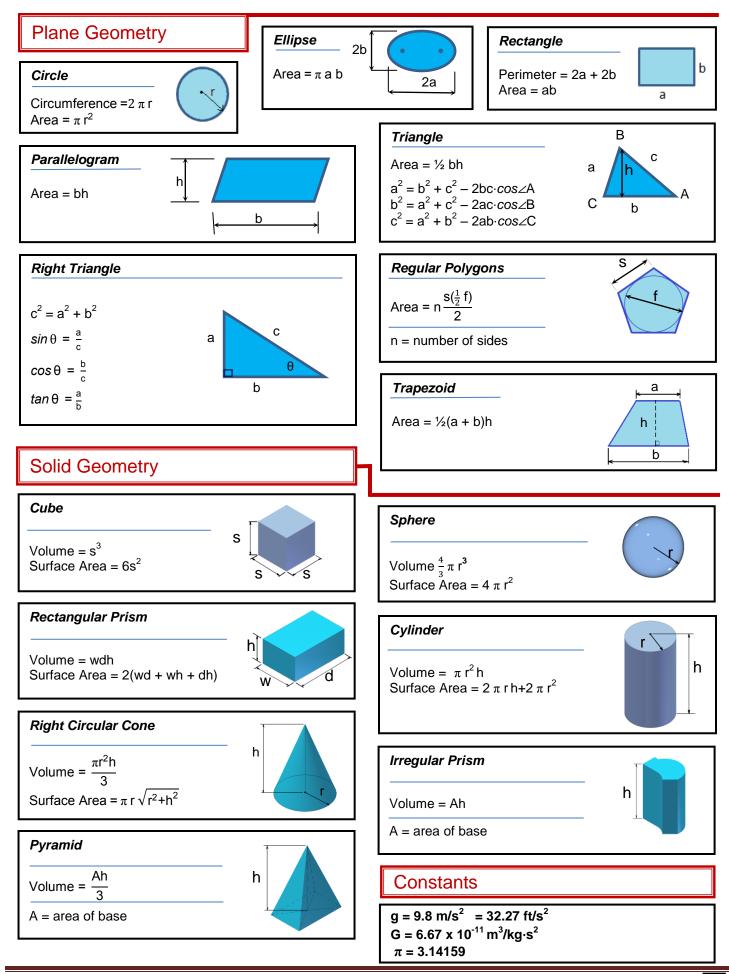
P (A and B and C) = probability of independent events A and B and C occurring in sequence P_A = probability of event A

Mutually Exclusive Events

 $P (A \text{ or } B) = P_A + P_B$

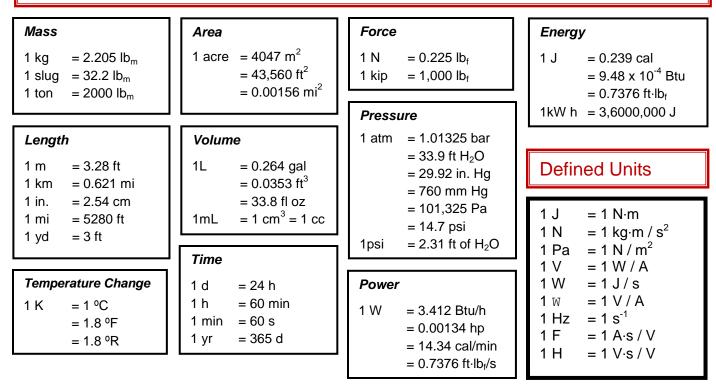
P (A or B) = probability of either mutually exclusive event A or B occurring in a trial

 P_A = probability of event A


 $\Sigma x_i = \text{sum of all data values } (x_1, x_2, x_3, ...)$

n = number of data values

Conditional Probability


$$P(A|D) = \frac{P(A) \cdot P(D|A)}{P(A) \cdot P(D|A) + P(\sim A) \cdot P(D|\sim A)}$$

P (A|D) = probability of event A given event D P(A) = probability of event A occurring P(\sim A) = probability of event A not occurring P(D \vdash A) = probability of event D given event A did not occur

Engineering Formulas

Conversions

SI Prefixes

Numbe	ers Less Th	an One
Power of 10	Prefix	Abbreviation
10 ⁻¹	deci-	d
10 ⁻²	centi-	С
10 ⁻³	milli-	m
10 ⁻⁶	micro-	μ
10 ⁻⁹	nano-	n
10 ⁻¹²	pico-	р
10 ⁻¹⁵	femto-	f
10 ⁻¹⁸	atto-	а
10 ⁻²¹	zepto-	Z
10 ⁻²⁴	yocto-	У

Numbe	rs Greater Th	an One
Power of 10	Prefix	Abbreviation
10 ¹	deca-	da
10 ²	hecto-	h
10 ³	kilo-	k
10 ⁶	Mega-	М
10 ⁹	Giga-	G
10 ¹²	Tera-	Т
10 ¹⁵	Peta-	Р
10 ¹⁸	Exa-	E
10 ²¹	Zetta-	Z
10 ²⁴	Yotta-	Y

Equations

Mass and Weight

 $M = VD_m$

W = mg

- $W = VD_w$
- V = volume
- D_m = mass density
- m = mass
- D_w = weight density
- g = acceleration due to gravity

Temperature

 $T_{K} = T_{C} + 273$

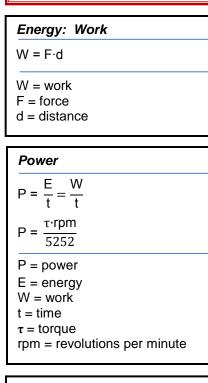
 $T_R = T_F + 460$

 $\frac{T_{\rm F} - 32}{180} = \frac{T_{\rm C}}{100}$

E tomporatura in Kalvi

- T_{K} = temperature in Kelvin T_{C} = temperature in Celsius
- T_{R} = temperature in Rankin
- T_F = temperature in Fahrenheit

- Force
- F = ma


F = force

m = mass

a = acceleration

Equation	ns of Static	Equilibrium
$\Sigma F_x = 0$	$\Sigma F_y = 0$	$\Sigma M_{P} = 0$
$F_y = force$	e in the x-di e in the y-di ment about	rection

Equations (Continued)

Efficiency

Efficiency (%) =
$$\frac{P_{out}}{P_{in}} \cdot 100\%$$

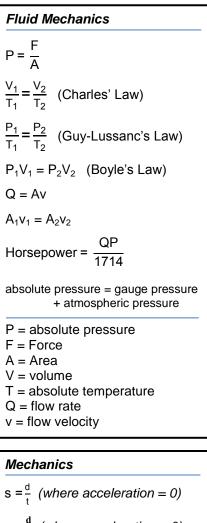
 P_{out} = useful power output

 $P_{in} = total power input$

Energy: Potential

U = mgh U = potential energy m =mass g = acceleration due to gravity h = height

Energy: Kinetic


 $K = \frac{1}{2} mv^2$

K = kinetic energy m = mass v = velocity

Energy: Thermal

Q =mc∆T

Q = thermal energy m = mass c = specific heat ΔT = change in temperature

 $\mathbf{v} = \frac{\mathbf{d}}{\mathbf{v}}$ (where acceleration = 0) $a = \frac{v_f - v_i}{t}$ $X = \frac{v_i \sin(2\theta)}{-\alpha}$ $v = v_0 + at$ $d = d_0 + v_0 t + \frac{1}{2} a t^2$ $v^2 = v_0^2 + 2a(d - d_0)$ $\tau = dFsin\theta$ s = speedv = velocitya = acceleration X = range t = time d = distanceg = acceleration due to gravity d = distance $\theta = angle$ $\tau = toraue$

F = force

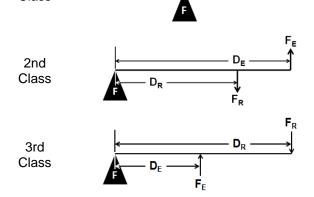
Electricity

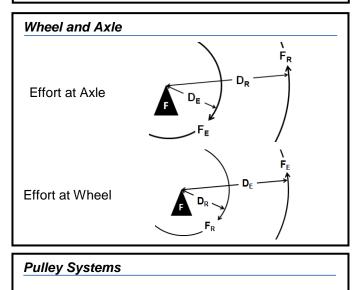

Ohm's Law V = IRP = IV R_{T} (series) = $R_{1} + R_{2} + \dots + R_{n}$ R_{T} (parallel) = $\frac{1}{\frac{1}{R_{1}} + \frac{1}{R_{2}} + \dots + \frac{1}{R_{D}}}$ Kirchhoff's Current Law $I_T = I_1 + I_2 + \dots + I_n$ or $I_T = \sum_{k=1}^n I_k$ Kirchhoff's Voltage Law $V_{T} = V_{1} + V_{2} + \dots + V_{n}$ or $V_T = \sum_{k=1}^n V_k$ V = voltage V_T = total voltage I = current I_T = total current R = resistance

 R_{T} = total resistance

P = power

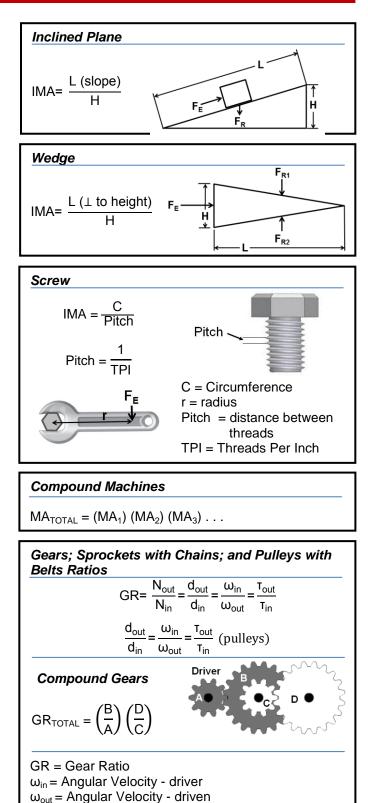
Thermodynamics $P = Q' = AU\Delta T$ $P = \frac{Q}{\Lambda t}$ $U = \frac{1}{R} = \frac{k}{L}$ $P = \frac{kA\Delta T}{I}$ $A_1V_1 = A_2V_2$ $P_{net} = \sigma Ae(T_2^4 - T_1^4)$ P = rate of heat transfer Q = thermal energy A = Area of thermal conductivity U = coefficient of heat conductivity (U-factor) ΔT = change in temperature Δt = change in time R = resistance to heat flow (R-value) k = thermal conductivity v = velocityP_{net} = net power radiated $\sigma = 5.6696 \times 10^{-8} \frac{W}{m^2 \cdot \kappa^4}$ e = emissivity constant


Section Properties



Engineering Formulas

Simple Machines



IMA = Total number of strands of a single string supporting the resistance

 $IMA = \frac{D_E \text{ (string pulled)}}{D_R \text{ (resistance lifted)}}$

N_{in} = Number of Teeth - driver

 d_{in} = Diameter - driver d_{out} = Diameter - driven

 τ_{in} = Torque - driver τ_{out} = Torque - driven

Nout = Number of Teeth - driven

PLTW, Inc.

Structural Design

Steel Beam Design: Shear $V_a = \frac{V_n}{\Omega_v}$ $V_n = 0.6F_yA_w$ V_a = allowable shear strength
 V_n = nominal shear strength
 Ω_v = 1.5 = factor of safety for shear
 F_v = yield stress

 $A_w = area of web$

Storm Water Runoff

Storm Water Drainage $Q = C_{f}CiA$ $C_{c} = \frac{C_{1}A_{1} + C_{2}A_{2} + \cdots}{A_{1} + A_{2} + \cdots}$ Q = peak storm water runoff rate (ft³/s) $C_{f} = runoff \text{ coefficient adjustment}}$ factor C = runoff coefficient i = rainfall intensity (in./h) A = drainage area (acres)

Runoff Coe Adjustmen				
Return				
Period	Cf			
1, 2, 5, 10	1, 2, 5, 10 1.0			
25	25 1.1			
50	1.2			
100	1.25			

Water Supply

$h_{f} = \frac{10.44LQ^{1.85}}{C^{1.85}d^{4.8655}}$ $h_{f} = head loss due to friction (ft of H_{2}O)$ $L = length of pipe (ft)$ $Q = water flow rate (gpm)$ $C = Hazen-Williams constant$ $d = diameter of pipe (in.)$	Hazen-Williams Formula
L = length of pipe (ft) Q = water flow rate (gpm) C = Hazen-Williams constant	$h_{\rm f} = \frac{10.44 L Q^{1.85}}{C^{1.85} d^{4.8655}}$
	L = length of pipe (ft) Q = water flow rate (gpm) C = Hazen-Williams constant

Dynamic Head

dynamic head = static head - head loss

$$\label{eq:main_state} \begin{array}{l} \hline \textbf{Steel Beam Design: Moment} \\ \hline \textbf{M}_a = \frac{\textbf{M}_n}{\Omega_b} \\ \hline \textbf{M}_n = F_y \textbf{Z}_x \\ \hline \textbf{M}_a = \text{allowable bending moment} \\ \hline \textbf{M}_n = \text{nominal moment strength} \\ \hline \Omega_b = 1.67 = \text{factor of safety for} \\ \hline \textbf{bending moment} \\ \hline \textbf{F}_y = \text{yield stress} \\ \hline \textbf{Z}_x = \text{plastic section modulus about} \\ \hline \textbf{neutral axis} \end{array}$$

Rational Method Ru				
Categorized by Surfa				
Forested	0.059—0.2			
Asphalt	0.7—0.95			
Brick	0.7—0.85			
Concrete	0.8—0.95			
Shingle roof	0.75—0.95			
Lawns, well draine	ed (sandy soil)			
Up to 2% slope	0.05—0.1			
2% to 7% slope	0.10—0.15			
Over 7% slope	0.15—0.2			
Lawns, poor drain	age (clay soil)			
Up to 2% slope	0.13—0.17			
2% to 7% slope	0.18—0.22			
Over 7% slope	0.25—0.35			
Driveways,	0.75—0.85			
Categorized	l by Use			
Farmland	0.05—0.3			
Pasture	0.05—0.3			
Unimproved	0.1—0.3			
Parks	0.1—0.25			
Cemeteries	0.1—0.25			
Railroad yard 0.2—0.40				
Playgrounds	0.2-0.35			
Business Districts				
Neighborhood 0.5—0.7				
City (downtown)	0.7—0.95			
Residential				
Single-family	0.3—0.5			
Multi-plexes,	0.4—0.6			
Multi-plexes,	0.6—0.75			
Suburban	0.25—0.4			
Apartments,	0.5—0.7			
Industr				
Light	0.5—0.8			
Heavy	0.6—0.9			

Spread Footing Design
$$q_{net} = q_{allowable} - p_{footing}$$
 $p_{footing} = t_{footing} \cdot 150 \frac{lb}{ft^2}$ $q = \frac{P}{A}$ $q_{net} = net allowable soil$
bearing pressure $q_{allowable} = total allowable soil$
bearing pressure $p_{footing} = soil bearing pressure$
 $p_{footing} = soil bearing pressure$

 $t_{\text{footing}} = \text{thickness of footing}$

q = soil bearing pressure

P = column load applied A = area of footing

	Typical Design Value	100	130	140	130	100
	Clean, New Pipe	130	140	150	140	140
Constants	Typical Range	80 - 150	120 - 150		120 - 150	80-150
Hazen-Williams Constants	Pipe Material	Cast Iron and Wrought Iron	Copper, Glass or Brass	Cement lined Steel or Iron	Plastic PVC or ABS	Steel, welded and seamless or interior riveted

Equivalent Length of (Generic) Fittings

Corol	and Cittings	Pipe Size										
anc	ocrewed Fittings	1/4	3/8	1/2	3/4	1	11/4	11/2	2	2 1/2	5	4
	Regular 90 degree	2.3	3.1	3.6	4.4	5.2	6.6	4.7	8.5	9.3	110	13.0
Elbows	Long radius 90 degree	15	2.0	2.2	23	2.7	3.2	3.4	3.6	3.6	4.0	4.6
	Regular 45 degree	0.3	0.5	0.7	6.0	13	1.7	2.1	2.7	3.2	4.0	5.5
1	Line Flow	0.8	12	1.7	2.4	3.2	4.6	5.6	1.7	9.3	12.0	17.0
0	Branch Flow	2.4	3.5	4.2	5.3	6.6	8.7	9.9	12.0	13.0	17.0	21.0
Return Bends	Regular 180 degree	2.3	3.1	3.6	4.4	5.2	6.6	7.4	8.5	9.3	110	13.0
	Globe	21.0	22.0	22.0	24.0	29.0	37.0	42.0	540	62.0	0'64	110.0
V-1-1-1	Gate	0.3	0.5	0.6	0.7	0.8	1.1	1.2	15	1.7	1.9	2.5
	Angle	12.8	15.0	15.0	15.0	17.0	18.0	18.0	18.0	18.0	18.0	18.0
	Swing Check	7.2	7.3	8.0	8.8	110	13.0	15.0	19.0	22.0	27.0	38.0
Strainer			46	05	66	77	18.0	0.02	77.0	29.0	075	42.0

	and Cittings	Pipe Size																
	rialigeu rittiligs	1/2	3/4	1	11/4	11/2	2	2 1/2	3	4	5	9	8	10	12	14	16	18
	Regular 90 degree	6'0	12	1.6	2.1	2.4	3.1	3.6	4.4	5.9	7.3	8.9	12.0	140	17.0	18.0	21.0	23.0
Elbows	Long radius 90 degree	1.1	13	1.6	2.0	23	2.7	2.7	3.4	4.2	5.0	5.7	0.7	8.0	0.9	9.4	10.0	110
	Regular 45 degree	0.5	0.6	0.8	1.1	13	1.7	2.0	2.6	3.5	4.5	5.6	7.7	9.0	110	13.0	15.0	16.0
	Line Flow	2.0	0.8	1.0	13	1.5	1.8	1.9	2.2	2.8	3.3	3.8	4.7	5.2	6.0	6.4	7.2	7.6
0	Branch Flow	2.0	2.6	33	4.4	5.2	6.6	7.5	9.4	12.0	15.0	18.0	24.0	30.0	34.0	37.0	43.0	47.0
Return Bends	Return Bendis Regular 180 degree	6'0	12	1.6	2.1	2.4	3.1	3.6	4.4	5.9	7.3	8.9	12.0	140	17.0	18.0	21.0	23.0
	Long radius 180 degree	1.1	13	1.6	2.0	23	2.7	2.9	3.4	4.2	5.0	5.7	7.0	8.0	9.0	9.4	10.0	110
	Globe	38.0	40.0	45.0	54.0	59.0	70.0	77.0	94.0	120.0	150.0	190.0	260.0	310.0	390.0			
Valves	Gate						2.6	2.7	2.8	2.9	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.2
	Angle	15.0	15.0	17.0	18.0	18.0	21.0	22.0	28.0	38.0	50.0	63.0	90.0	120.0	140.0	160.0	190.0	210.0
	Swing Check	3.8	53	7.2	10.0	12.0	17.0	21.0	27.0	38.0	50.0	63.0	90.0	120.0	140.0			

555 Timer Design Equations

 $T = 0.693 (R_{A} + 2R_{B})C$ $f = \frac{1}{T}$ $duty-cycle = \frac{(R_{A} + R_{B})}{(R_{A} + 2R_{B})} \cdot 100\%$ T = period f = frequency $R_{A} = resistance A$ $R_{B} = resistance B$ C = capacitance

Boolean Algebra	1	
Boolean Theorems $\overline{X \cdot 0} = 0$ $X \cdot 1 = X$ $X \cdot X = X$ $X \cdot \overline{X} = 0$	Commutative LawX•Y = Y•XX+Y = Y+XAssociative Law	Consensus Theorems $X + \overline{X}Y = X + Y$ $X + \overline{X}\overline{Y} = X + \overline{Y}$ $\overline{X} + \overline{X}\overline{Y} = \overline{X} + \overline{Y}$ $\overline{X} + X\overline{Y} = \overline{X} + \overline{Y}$
$X + 0 = X$ $X + 1 = 1$ $X + X = X$ $X + \overline{X} = 1$ $\overline{\overline{X}} = X$	X(YZ) = (XY)Z $X + (Y + Z) = (X + Y) + Z$ $Distributive Law$ $X(Y+Z) = XY + XZ$ $(X+Y)(W+Z) = XW+XZ+YW+YZ$	$ \frac{DeMorgan's Theorems}{\overline{XY} = \overline{X} + \overline{Y}} $ $ \overline{X+Y} = \overline{X} \cdot \overline{Y} $

Speeds and Feeds

$$\begin{split} N &= \frac{CS\left(12^{in.}_{\overline{ft}}\right)}{\pi d} \\ \frac{f_m = f_t \cdot n_t \cdot N}{Plunge \ Rate = \frac{1}{2} \cdot f_m} \\ N &= \text{spindle speed (rpm)} \\ CS &= \text{cutting speed (in./min)} \\ d &= \text{diameter (in.)} \\ f_m &= \text{feed rate (in./min)} \\ f_t &= \text{feed (in./tooth)} \\ n_t &= \text{number of teeth} \end{split}$$

Aerospace Equations

Forces of Flight

$$C_{D} = \frac{2D}{A\rho v^{2}}$$

$$R_{e} = \frac{\rho v I}{\mu}$$

$$C_{L} = \frac{2L}{A\rho v^{2}}$$

$$M = Fd$$

$$C_{L} = coefficient of lift$$

$$C_{D} = coefficient of drag$$

$$L = lift$$

$$D = drag$$

$$A = wing area$$

$$\rho = density$$

$$R_{e} = Reynolds number$$

$$v = velocity$$

$$I = length of fluid travel$$

$$\mu = fluid viscosity$$

$$F = force$$

$$m = mass$$

$$g = acceleration due to gravity$$

$$M = moment$$

$$d = moment arm (distance from datum perpendicular to F$$

Propulsion $F_N = W(v_j - v_o)$ $I = F_{ave} \Delta t$ $F_{net} = F_{ava} - F_a$ a = v_f∆t F_N = net thrust W = air mass flow $v_0 =$ flight velocity v_i = jet velocity I = total impulse F_{ave} = average thrust force Δt = change in time (thrust duration) $F_{net} = net force$ F_{avg} = average force F_g = force of gravity v_f = final velocity a = acceleration Δt = change in time (thrust duration) NOTE: Fave and Favg are easily confused. Energy $K = \frac{1}{2}mv^2$ $U = \frac{-GMm}{R}$ GMm E = U + K = -2R K = kinetic energy m =mass v = velocityU = gravitational potential energy G = universal gravitation constant M =mass of central body m = mass of orbiting object R = Distance center main body to center of orbiting object E = Total Energy of an orbit

Orbital Mechanics $e = \sqrt{1 - \frac{b^2}{a^2}}$ $T = 2\pi \frac{a^{\frac{3}{2}}}{\sqrt{\mu}} = 2\pi \frac{a^{\frac{3}{2}}}{\sqrt{GM}}$ $F = \frac{GMm}{r^2}$ e = eccentricityb = semi-minor axis a =semi-major axis T = orbital period a = semi-major axis μ = gravitational parameter F = force of gravity between two bodies G = universal gravitation constant M =mass of central body m = mass of orbiting object r = distance between center of two objects Bernoulli's Law $\left(\mathsf{P}_{\mathsf{s}} + \frac{\rho \mathsf{v}^2}{2}\right)_1 = \left(\mathsf{P}_{\mathsf{s}} + \frac{\rho \mathsf{v}^2}{2}\right)_2$ P_S = static pressure v = velocity ρ = density Atmosphere Parameters T = 15.04 - 0.00649h $p = 101.29 \left[\frac{(T + 273.1)}{288.08} \right]^{5.256}$ $\rho = \frac{\rho}{0.2869(T + 273.1)}$

- T = temperature
- h = height
- p = pressure $\rho = density$