Engineering Formula Sheet

Statistics

Mean

$\mu=\frac{\sum x_{i}}{n}$
$\mu=$ mean value
$\Sigma \mathrm{x}_{\mathrm{i}}=$ sum of all data values ($\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots$)
$\mathrm{n}=$ number of data values

Standard Deviation

$$
\sigma=\sqrt{\frac{\sum\left(x_{i}-\mu\right)^{2}}{n}}
$$

$\sigma=$ standard deviation
$\mathrm{x}_{\mathrm{i}}=$ individual data value $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots\right)$
$\mu=$ mean value
$\mathrm{n}=$ number of data values

Probability

Frequency

$\mathrm{f}_{\mathrm{x}}=\frac{\mathrm{n}_{\mathrm{x}}}{\mathrm{n}}$
$P_{x}=\frac{f_{x}}{f_{a}}$
$\mathrm{f}_{\mathrm{x}}=$ relative frequency of outcome x
$\mathrm{n}_{\mathrm{x}}=$ number of events with outcome x
$\mathrm{n}=$ total number of events
$\mathrm{P}_{\mathrm{x}}=$ probability of outcome x
$f_{a}=$ frequency of all events

Binomial Probability (order doesn't matter)

Independent Events

$\mathrm{P}(\mathrm{A}$ and B and C$)=\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{C}}$
$P(A$ and B and $C)=$ probability of independent events A and B and C occurring in sequence $P_{A}=$ probability of event A

Mutually Exclusive Events

$P(A$ or $B)=P_{A}+P_{B}$
$P(A$ or $B)=$ probability of either mutually exclusive
event A or B occurring in a trial
$\mathrm{P}_{\mathrm{A}}=$ probability of event A
$\Sigma x_{i}=$ sum of all data values ($x_{1}, x_{2}, x_{3}, \ldots$)
$P_{k}=\frac{n!\left(p^{k}\right)\left(q^{n-k}\right)}{k!(n-k)!}$
$P_{k}=$ binomial probability of k successes in n trials
$\mathrm{p}=$ probability of a success
$q=1-p=$ probability of failure
$k=$ number of successes
$\mathrm{n}=$ number of trials

Mode

Place data in ascending order.
Mode = most frequently occurring value
If two values occur at the maximum frequency the data set is bimodal.
If three or more values occur at the maximum frequency the data set is multi-modal.

Median

Place data in ascending order.
If n is odd, median = central value
If n is even, median = mean of two central values
$\mathrm{n}=$ number of data values

Range

Range $=x_{\text {max }}-x_{\text {min }}$
$x_{\text {max }}=$ maximum data value
$x_{\text {min }}=$ minimum data value
$\mathrm{n}=$ number of data values

Conditional Probability

$P(A \mid D)=\frac{P(A) \cdot P(D \mid A)}{P(A) \cdot P(D \mid A)+P(\sim A) \cdot P(D \mid \sim A)}$
$P(A \mid D)=$ probability of event A given event D
$P(A)=$ probability of event A occurring
$P(\sim A)=$ probability of event A not occurring
$P(D \nmid \sim A)=$ probability of event D given event A did not occur

Plane Geometry

Triangle

Area $=1 / 2$ bh
$a^{2}=b^{2}+c^{2}-2 b c \cdot \cos \angle A$
$\mathrm{b}^{2}=\mathrm{a}^{2}+\mathrm{c}^{2}-2 \mathrm{ac} \cdot \cos \angle \mathrm{B}$
$c^{2}=a^{2}+b^{2}-2 a b \cdot \cos \angle C$

Rectangle

Perimeter $=2 a+2 b$
Area $=\mathrm{ab}$

Regular Polygons

Area $=\mathrm{n} \frac{\mathrm{s}\left(\frac{1}{2} \mathrm{f}\right)}{2}$

$\mathrm{n}=$ number of sides

Trapezoid

Area $=1 / 2(a+b) h$

Sphere

Volume $\frac{4}{3} \pi r^{3}$
Surface Area $=4 \pi r^{2}$

Volume $=\frac{\pi r^{2} h}{3}$
Surface Area $=\pi r \sqrt{r^{2}+h^{2}}$

Right Circular Cone

Pyramid

Volume $=\frac{A h}{3}$
A = area of base

Irregular Prism Volume $=\mathrm{Ah}$ A $=$ area of base Constants $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}=32.27 \mathrm{ft} / \mathrm{s}^{2}$ $\mathrm{G}=6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{s}^{2}$ $\pi=3.14159$

Conversions

Mass	
1 kg	$=2.205 \mathrm{lb}_{\mathrm{m}}$
1 slug	$=32.2 \mathrm{lb}_{\mathrm{m}}$
1 ton	$=2000 \mathrm{lb}_{\mathrm{m}}$

Length

1 m	$=3.28 \mathrm{ft}$
1 km	$=0.621 \mathrm{mi}$
1 in.	$=2.54 \mathrm{~cm}$
1 mi	$=5280 \mathrm{ft}$
1 yd	$=3 \mathrm{ft}$

Temperature Change

$1 \mathrm{~K}=1{ }^{\circ} \mathrm{C}$
$=1.8{ }^{\circ} \mathrm{F}$
$=1.8{ }^{\circ} \mathrm{R}$

Area	
1 acre	$=4047 \mathrm{~m}^{2}$
	$=43,560 \mathrm{ft}^{2}$
	$=0.00156 \mathrm{mi}^{2}$

Force	
1 N	$=0.225 \mathrm{lb}_{\mathrm{f}}$
1 kip	$=1,000 \mathrm{lb}_{\mathrm{f}}$

Pressure

Volume

$1 \mathrm{~L} \quad=0.264 \mathrm{gal}$
$=0.0353 \mathrm{ft}^{3}$
$=33.8 \mathrm{fl} \mathrm{oz}$
$1 \mathrm{~mL}=1 \mathrm{~cm}^{3}=1 \mathrm{cc}$

Time

$1 \mathrm{~d}=24 h$
$1 \mathrm{~h}=60 \mathrm{~min}$
$1 \mathrm{~min}=60 \mathrm{~s}$
$1 \mathrm{yr}=365 \mathrm{~d}$

Energy

$$
\begin{aligned}
1 \mathrm{~J} \quad & =0.239 \mathrm{cal} \\
& =9.48 \times 10^{-4} \mathrm{Btu} \\
& =0.7376 \mathrm{ft} \cdot \mathrm{~b}_{\mathrm{f}} \\
1 \mathrm{~kW} \mathrm{~h} & =3,6000,000 \mathrm{~J}
\end{aligned}
$$

Defined Units

$1 \mathrm{~J}=1 \mathrm{~N} \cdot \mathrm{~m}$
$1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$
$1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}$
$1 \mathrm{~V}=1 \mathrm{~W} / \mathrm{A}$
$1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}$
$1 \mathrm{~W}=1 \mathrm{~V} / \mathrm{A}$
$1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}$
$1 \mathrm{~F}=1 \mathrm{~A} \cdot \mathrm{~s} / \mathrm{V}$
$1 \mathrm{H}=1 \mathrm{~V} \cdot \mathrm{~s} / \mathrm{V}$

SI Prefixes

Numbers Less Than One							
Power of 10	Prefix	Abbreviation					
10^{-1}	deci-	d					
10^{-2}	centi-	c					
10^{-3}	milli-	m					
10^{-6}	micro-	μ					
10^{-9}	nano-	n					
10^{-12}	pico-	p					
10^{-15}	femto-	f					
10^{-18}	atto-	a					
10^{-21}	zepto-	z					
10^{-24}	yocto-	y	\quad	Numbers Greater Than One			
:---:	:---:	:---:	:---:				
	Power of 10	Prefix	Abbreviation				
	10^{1}	deca-	da				
	10^{2}	hecto-	h				
	10^{3}	kilo-	k				
	10^{6}	Mega-	M				
	10^{9}	Giga-	G				
	10^{12}	Tera-	T				
	10^{15}	Peta-	P				
	10^{21}	Zetta-	Z				
10^{24}	Yotta-	Y					

Equations

Mass and Weight
$M=V D_{m}$
$W=m g$
$W=V D_{w}$
$V=$ volume
$D_{m}=$ mass density
$m=$ mass
$D_{w}=$ weight density
$g=$ acceleration due to gravity

Temperature

$\mathrm{T}_{\mathrm{K}}=\mathrm{T}_{\mathrm{C}}+273$
$T_{R}=T_{F}+460$
$\frac{T_{F}-32}{180}=\frac{T_{C}}{100}$
$\mathrm{T}_{\mathrm{K}}=$ temperature in Kelvin
$\mathrm{T}_{\mathrm{C}}=$ temperature in Celsius
$\mathrm{T}_{\mathrm{R}}=$ temperature in Rankin
$\mathrm{T}_{\mathrm{F}}=$ temperature in Fahrenheit

Force
$\mathrm{F}=\mathrm{ma}$
F = force
$\mathrm{m}=$ mass
$\mathrm{a}=$ acceleration

Equations of Static Equilibrium

$\Sigma \mathrm{F}_{\mathrm{x}}=0 \quad \Sigma \mathrm{~F}_{\mathrm{y}}=0 \quad \Sigma \mathrm{M}_{\mathrm{p}}=0$
$\mathrm{F}_{\mathrm{x}}=$ force in the x -direction
$F_{y}=$ force in the y-direction
$M_{P}=$ moment about point P

Equations (Continued)

Energy: Work
$W=\mathrm{F} \cdot \mathrm{d}$
$\mathrm{W}=$ work
$\mathrm{F}=$ force
$\mathrm{d}=$ distance

Power

$P=\frac{E}{t}=\frac{W}{t}$
$P=\frac{\tau \cdot r p m}{5252}$
$\mathrm{P}=$ power
$E=$ energy
W = work
$\mathrm{t}=$ time
$\tau=$ torque
rpm = revolutions per minute

Efficiency

Efficiency (\%) $=\frac{P_{\text {out }}}{P_{\text {in }}} \cdot 100 \%$
$\mathrm{P}_{\text {out }}=$ useful power output
$P_{\text {in }}=$ total power input

Energy: Potential
$\mathrm{U}=\mathrm{mgh}$
$\mathrm{U}=$ potential energy
$\mathrm{m}=$ mass
$\mathrm{g}=$ acceleration due to gravity
$\mathrm{h}=$ height

Energy: Kinetic
$\mathrm{K}=\frac{1}{2} \mathrm{mv}^{2}$
$\mathrm{~K}=$ kinetic energy
$\mathrm{m}=$ mass
$\mathrm{V}=$ velocity

Energy: Thermal
$\mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$
$\mathrm{Q}=$ thermal energy
$\mathrm{m}=$ mass
$\mathrm{C}=$ specific heat
$\Delta \mathrm{T}=$ change in temperature

Fluid Mechanics

$P=\frac{F}{A}$
$\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}$ (Charles' Law)
$\frac{\mathrm{P}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}}$ (Guy-Lussanc's Law)
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$ (Boyle's Law)
$Q=A v$
$\mathrm{A}_{1} \mathrm{v}_{1}=\mathrm{A}_{2} \mathrm{v}_{2}$
Horsepower $=\frac{\text { QP }}{1714}$
absolute pressure = gauge pressure + atmospheric pressure
$\mathrm{P}=$ absolute pressure
$\mathrm{F}=\mathrm{Force}$
A = Area
$\mathrm{V}=$ volume
$\mathrm{T}=$ absolute temperature
Q = flow rate
v = flow velocity

Mechanics
$\mathrm{s}=\frac{\mathrm{d}}{\mathrm{t}} \quad($ where acceleration $=0)$
$\mathbf{v}=\frac{\mathbf{d}}{\mathrm{t}}($ where acceleration $=0)$
$a=\frac{v_{f}-v_{i}}{t}$
$X=\underline{v_{i} \sin (2 \theta)}$
-g
$v=v_{0}+$ at
$d=d_{0}+v_{0} t+1 / 2 a t^{2}$
$\mathrm{v}^{2}=\mathrm{v}_{0}{ }^{2}+2 \mathrm{a}\left(\mathrm{d}-\mathrm{d}_{0}\right)$
$\boldsymbol{\tau}=\mathrm{dF} \sin \theta$
s = speed
$\mathrm{v}=$ velocity
$\mathrm{a}=$ acceleration
$\mathrm{X}=$ range
$\mathrm{t}=\text { time }$
$\begin{aligned} & g=\text { acceleration due to gravity } \\ & d=\text { distance } \end{aligned}$
$\theta=$ angle
$\tau=$ torque
$F=$ force

Electricity

> Ohm's Law
> $\mathrm{V}=\mathrm{IR}$
> $\mathrm{P}=\mathrm{IV}$
> R_{T} (series) $=\mathrm{R}_{1}+\mathrm{R}_{2}+\cdots+\mathrm{R}_{\mathrm{n}}$
> R_{T} (parallel) $=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{n}}}$

Kirchhoff's Current Law

$I_{T}=I_{1}+I_{2}+\cdots+I_{n}$

$$
\text { or } \mathrm{I}_{\mathrm{T}}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{I}_{\mathrm{k}}
$$

Kirchhoff's Voltage Law

$\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{1}+\mathrm{V}_{2}+\cdots+\mathrm{V}_{\mathrm{n}}$

$$
\text { or } \quad V_{T}=\sum_{k=1}^{n} V_{k}
$$

$\mathrm{V}=$ voltage
$\mathrm{V}_{\mathrm{T}}=$ total voltage
I = current
$\mathrm{I}_{\mathrm{T}}=$ total current
$R=$ resistance
$R_{T}=$ total resistance
$\mathrm{P}=$ power

Thermodynamics

$P=Q^{\prime}=A U \Delta T$
$P=\frac{Q}{\Delta t}$
$U=\frac{1}{R}=\frac{k}{L}$
$P=\frac{k A \Delta T}{L}$
$\mathrm{A}_{1} \mathrm{v}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2}$
$\mathrm{P}_{\text {net }}=\sigma \operatorname{Ae}\left(\mathrm{T}_{2}{ }^{4}-\mathrm{T}_{1}{ }^{4}\right)$
$\mathrm{P}=$ rate of heat transfer
$Q=$ thermal energy
A = Area of thermal conductivity
$U=$ coefficient of heat conductivity (U-factor)
$\Delta T=$ change in temperature
$\Delta t=$ change in time
$R=$ resistance to heat flow (R-value)
$\mathrm{k}=$ thermal conductivity
$\mathrm{v}=$ velocity
$P_{\text {net }}=$ net power radiated
$\sigma=5.6696 \times 10^{-8} \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{k}^{4}}$
$e=$ emissivity constant

Section Properties

Moment of Inertia
 $I_{x x}=\frac{b h^{3}}{12}$

$\mathrm{I}_{\mathrm{xx}}=$ moment of inertia of a rectangular section about x - x axis

Complex Shapes Centroid

$\bar{x}=\frac{\sum x_{i} A_{i}}{\sum A_{i}}$ and $\bar{y}=\frac{\sum y_{i} A_{i}}{\sum A_{i}}$
$\bar{x}=x$-distance to the centroid
$\bar{y}=y$-distance to the centroid
$x_{i}=x$ distance to centroid of shape i
$y_{i}=y$ distance to centroid of shape i
$\mathrm{A}_{\mathrm{i}}=$ Area of shape i

Material Properties
Stress (axial) $\sigma=\frac{\mathrm{F}}{\mathrm{A}}$ $\sigma=$ stress $\mathrm{F}=$ axial force $\mathrm{A}=$ cross-sectional area

Strain (axial)

$\epsilon=\frac{\delta}{\mathrm{L}_{0}}$
$\epsilon=$ strain
$L_{0}=$ original length
$\delta=$ change in length

Modulus of Elasticity

$\mathrm{E}=\frac{\sigma}{\varepsilon}$
$\mathrm{E}=\frac{\sigma\left(\mathrm{F}_{2}-\mathrm{F}_{1}\right) \mathrm{L}_{0}}{\left(\delta_{2}-\delta_{1}\right) \mathrm{A}}$
$\mathrm{E}=$ modulus of elasticity
$\sigma=$ stress
$\varepsilon=$ strain
$\mathrm{A}=$ cross-sectional area
$\mathrm{F}=$ axial force
$\delta=$ deformation

Deformation: Axial

$\delta=\frac{\mathrm{FL}_{0}}{\mathrm{AE}}$
$\delta=$ deformation
F = axial force
$\mathrm{L}_{0}=$ original length

Rectangle Centroid

$\bar{x}=\frac{b}{2}$ and $\bar{y}=\frac{h}{2}$

Right Triangle Centroid
$\bar{x}=\frac{b}{3}$ and $\bar{y}=\frac{h}{3}$

Semi-circle Centroid

$\bar{x}=r$ and $\bar{y}=\frac{4 r}{3 \pi}$

$\bar{x}=x$-distance to the centroid
$\bar{y}=y$-distance to the centroid

Structural Analysis

Beam Formulas		
	Reaction Moment Deflection	$\begin{gathered} R_{A}=R_{B}=\frac{P}{2} \\ \mathrm{M}_{\max }=\frac{\mathrm{PL}}{4} \text { (at point of load) } \\ \Delta_{\max }=\frac{\mathrm{PL}}{48 \mathrm{E}} \text { (at point of load) } \end{gathered}$
	Reaction Moment Deflection	$\begin{aligned} & R_{A}=R_{B}=\frac{\omega L}{2} \\ & M_{\max }=\frac{\omega L^{2}}{8} \quad \text { (at center) } \\ & \Delta_{\max }=\frac{55 L^{4}}{384 E I} \quad \text { (at center) } \end{aligned}$
	Reaction Moment Deflection	$\begin{aligned} & R_{A}=R_{B}=P \\ & M_{\max }=P a \quad \text { (between loads) } \\ & \Delta_{\max }=\frac{P a}{24 E I}\left(3 L^{2}-4 a^{2}\right) \quad \text { (at center) } \end{aligned}$
	Reaction Moment Deflection	$\begin{aligned} & R_{A}=\frac{P b}{L} \text { and } R_{B}=\frac{P a}{L} \\ & M_{\max }=\frac{\mathrm{Pab}}{L}(\text { at Point of Load }) \\ & \Delta_{\max }=\frac{\mathrm{Pab}(a+2 b \sqrt{3 a(a+2 b)}}{27 \mathrm{EL}} \\ & \left(\text { at } \mathrm{x}=\sqrt{\frac{a(a+2 b)}{3,}} \text { when } \mathrm{a}>\mathrm{b}\right) \end{aligned}$

$\mathrm{A}=$ cross-sectional area
$\mathrm{E}=$ modulus of elasticity

Truss Analysis

$2 J=M+R$
$J=$ number of joints
M =number of members
$R=$ number of reaction forces

Simple Machines

Mechanical Advantage (MA)

Wheel and Axle

Effort at Wheel

Pulley Systems

IMA = Total number of strands of a single string supporting the resistance

IMA $=\frac{D_{E}(\text { string pulled })}{D_{R}(\text { resistance lifted })}$

Wedge

IMA $=\frac{L(\perp \text { to height })}{H}$

Screw

$$
\text { Pitch }=\frac{1}{\mathrm{TPI}}
$$

Pitch
$C=$ Circumference
$r=$ radius
Pitch = distance between threads
TPI = Threads Per Inch

Compound Machines

$M A_{\text {TOTAL }}=\left(M A_{1}\right)\left(M A_{2}\right)\left(M A_{3}\right) \ldots$

Gears; Sprockets with Chains; and Pulleys with Belts Ratios

$$
\begin{aligned}
& G R=\frac{N_{\text {out }}}{N_{\text {in }}}=\frac{d_{\text {out }}}{d_{\text {in }}}=\frac{\omega_{\text {in }}}{\omega_{\text {out }}}=\frac{T_{\text {out }}}{T_{\text {in }}} \\
& \frac{d_{\text {out }}}{d_{\text {in }}}=\frac{\omega_{\text {in }}}{\omega_{\text {out }}}=\frac{T_{\text {out }}}{T_{\text {in }}} \text { (pulleys) }
\end{aligned}
$$

Compound Gears

$\mathrm{GR}_{\text {TOTAL }}=\left(\frac{\mathrm{B}}{\mathrm{A}}\right)\left(\frac{\mathrm{D}}{\mathrm{C}}\right)$

[^0]
Structural Design

Steel Beam Design: Shear
$\mathrm{V}_{\mathrm{a}}=\frac{\mathrm{V}_{\mathrm{n}}}{\Omega_{\mathrm{v}}}$
$\mathrm{V}_{\mathrm{n}}=0.6 \mathrm{~F}_{\mathrm{y}} \mathrm{A}_{\mathrm{w}}$
$\mathrm{V}_{\mathrm{a}}=$ allowable shear strength
$\mathrm{V}_{\mathrm{n}}=$ nominal shear strength
$\Omega_{\mathrm{v}}=1.5=$ factor of safety for shear
$\mathrm{F}_{\mathrm{y}}=$ yield stress
$\mathrm{A}_{\mathrm{w}}=$ area of web

Storm Water Runoff

Storm Water Drainage

$\mathrm{Q}=\mathrm{C}_{\mathrm{f}} \mathrm{CiA}$
$C_{c}=\frac{C_{1} A_{1}+C_{2} A_{2}+\cdots}{A_{1}+A_{2}+\cdots}$
$\mathrm{Q}=$ peak storm water runoff rate ($\mathrm{ft}{ }^{3} / \mathrm{s}$)
$\mathrm{C}_{\mathrm{f}}=$ runoff coefficient adjustment factor
$\mathrm{C}=$ runoff coefficient
$\mathrm{i}=$ rainfall intensity (in./h)
A = drainage area (acres)

Runoff Coefficient Adjustment Factor	fficient Factor
Return Period	Cf
1, 2, 5, 10	1.0
25	1.1
50	1.2
100	1.25
Water Supply	
Hazen-Williams Formula	
$\mathrm{h}_{\mathrm{f}}=\frac{10.44 \mathrm{LQ}^{1.85}}{\mathrm{C}^{1.85} \mathrm{~d}^{4.8655}}$	
$\mathrm{h}_{\mathrm{f}}=$ head loss due to $\mathrm{L}=$ length of pipe (ft) $\mathrm{Q}=$ water flow rate C = Hazen-Williams $\mathrm{d}=$ diameter of pipe	friction ($\mathrm{ft} \mathrm{of} \mathrm{H}_{2} \mathrm{O}$) gpm) constant (in.)

Dynamic Head

dynamic head = static head - head loss

Steel Beam Design: Moment

$M_{a}=\frac{M_{n}}{\Omega_{\mathrm{b}}}$
$M_{n}=F_{y} Z_{x}$
$\mathrm{M}_{\mathrm{a}}=$ allowable bending moment
$\mathrm{M}_{\mathrm{n}}=$ nominal moment strength
$\Omega_{\mathrm{b}}=1.67=$ factor of safety for bending moment
$\mathrm{F}_{\mathrm{y}}=$ yield stress
$\mathrm{Z}_{\mathrm{x}}=$ plastic section modulus about neutral axis

Rational Method Runoff Coefficients
Categorized by Surface
Foreser

Spread Footing Design

$q_{\text {net }}=q_{\text {allowable }}-p_{\text {footing }}$
$\mathrm{p}_{\text {footing }}=\mathrm{t}_{\text {footing }} \cdot 150 \frac{\mathrm{lb}}{\mathrm{ft}^{2}}$
$q=\frac{P}{A}$
$\mathrm{q}_{\text {net }}=$ net allowable soil bearing pressure
$q_{\text {allowable }}=$ total allowable soil bearing pressure
$\mathrm{p}_{\text {footing }}=$ soil bearing pressure due to footing weight $\mathrm{t}_{\text {footing }}=$ thickness of footing $\mathrm{q}=$ soil bearing pressure
$\mathrm{P}=$ column load applied
A = area of footing
Hazen-Williams Constants

Pipe Material	Typical Range	Clean, New Pipe	Typical Design Value
Cast Iron and Wrought Iron	$80-150$	130	100
Copper, Glass or Brass	$120-150$	140	130
Cement lined Steel or Iron	$120-150$	140	140
Plastic PVC or ABS	$80-150$	140	130
Steel, welded and seamless or interior riveted	100		

555 Timer Design Equations

$\mathrm{T}=0.693\left(\mathrm{R}_{\mathrm{A}}+2 \mathrm{R}_{\mathrm{B}}\right) \mathrm{C}$
$f=\frac{1}{\mathrm{~T}}$
duty-cycle $=\frac{\left(R_{A}+R_{B}\right)}{\left(R_{A}+2 R_{B}\right)} \cdot 100 \%$
$\mathrm{T}=$ period
$f=$ frequency
$\mathrm{R}_{\mathrm{A}}=$ resistance A
$\mathrm{R}_{\mathrm{B}}=$ resistance B
C = capacitance

Boolean Algebra

Boolean Theorems
$X \cdot 0=0$
$X \cdot 1=X$
$X \cdot X=X$
$X \cdot \bar{X}=0$
$X+0=X$
$X+1=1$
$X+X=X$
$X+\bar{X}=1$
$\bar{X}=X$

Commutative Law
$X \cdot Y=Y \cdot X$
$X+Y=Y+X$

Associative Law
$\mathrm{X}(\mathrm{YZ})=(\mathrm{XY}) \mathrm{Z}$
$\mathrm{X}+(\mathrm{Y}+\mathrm{Z})=(\mathrm{X}+\mathrm{Y})+\mathrm{Z}$

Consensus Theorems
$X+\bar{X} Y=X+Y$
$X+\bar{X} \bar{Y}=X+\bar{Y}$
$\bar{X}+X Y=\bar{X}+Y$
$\bar{X}+X \bar{Y}=\bar{X}+\bar{Y}$

DeMorgan's Theorems
$\overline{X Y}=\bar{X}+\bar{Y}$
$\overline{X+Y}=\bar{X} \cdot \bar{Y}$

Speeds and Feeds

$N=\frac{\operatorname{cs}\left(12 \frac{\text { in }}{\text { it }}\right)}{\pi d}$
$f_{m}=f_{t} \cdot n_{t} \cdot N$
Plunge Rate $=1 / 2 \cdot f_{m}$
$N=$ spindle speed (rpm)
$C S=$ cutting speed (in. $/ \mathrm{min}$)
$d=$ diameter (in.)
$f_{m}=$ feed rate (in. $/ \mathrm{min}$)
$f_{t}=$ feed (in./tooth)
$n_{t}=$ number of teeth

[^0]: GR = Gear Ratio
 $\omega_{\text {in }}=$ Angular Velocity - driver
 $\omega_{\text {out }}=$ Angular Velocity - driven
 $\mathrm{N}_{\text {in }}=$ Number of Teeth - driver
 $\mathrm{N}_{\text {out }}=$ Number of Teeth - driven
 $\mathrm{d}_{\text {in }}=$ Diameter - driver
 $\mathrm{d}_{\text {out }}=$ Diameter - driven
 $\mathrm{T}_{\text {in }}=$ Torque - driver
 $\mathrm{T}_{\text {out }}=$ Torque - driven

